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There has been significant growth in both utility-scale and residential-scale solar installations in recent

years, driven by rapid technology improvements and falling prices. Unlike utility-scale solar farms that

are professionally managed and maintained, smaller residential-scale installations often lack sensing and

instrumentation for performance monitoring and fault detection. As a result, faults may go undetected for

long periods of time, resulting in generation and revenue losses for the homeowner. In this paper, we present

SunDown, a sensorless approach designed to detect per-panel faults in residential solar arrays. SunDown does

not require any new sensors for its fault detection and instead uses a model-driven approach that leverages

correlations between the power produced by adjacent panels to detect deviations from expected behavior.

SunDown can handle concurrent faults in multiple panels and perform anomaly classification to determine

probable causes. Using two years of solar generation data from a real home and a manually generated dataset

of multiple solar faults, we show that SunDown has a MAPE of 2.98% when predicting per-panel output. Our

results show that SunDown is able to detect and classify faults, including from snow cover, leaves and debris,

and electrical failures with 99.13% accuracy, and can detect multiple concurrent faults with 97.2% accuracy.
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1 INTRODUCTION
Recent technological advances and falling hardware price have led to significant growth in the

deployment of renewable solar within the electric grid. The cost of solar deployments have dropped

to less than $2.75 per watt in recent years [2] and have become competitive with traditional energy

sources. As a result, utility-scale and residential-scale solar deployments have experienced sustained

growth across the world, with more than 2.6GW of deployments in 2019 Q3 in the US alone [2].
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Typically, larger utility-scale solar farms are professionally monitored and maintained for optimal

performance—they are instrumented for monitoring real-time generation to identify production

issues, and also cleaned frequently to reduce dust or pollen. Researchers have also suggested using

drones carrying thermal cameras to identify and locate faults in large solar arrays [8]. However,

the majority of solar installations today are small-scale installations, often on residential rooftops,

with capacities of less than 10 kW in 2018 [1]. Due to cost reasons, such systems lack sensing

and instrumentation that may be present in larger utility-scale solar farms. Further, monitoring of

these systems is left to homeowners, who lack the technical expertise for this task. At best, system

performance may be monitored at a coarse-grain system-wide basis to determine system-level

issues. As a result, it is not uncommon for residential solar arrays to encounter power anomalies

or other local faults that go undetected for long periods of time, resulting in a loss of generation

and revenue for the owner. While it is possible to add sensors and instrumentation for real-time

monitoring, doing so for small-scale installations increases their cost, and is challenging to do for

millions of installations that are already operational without such capabilities.

In addition to initially detecting an anomaly, classifying the type of anomaly is important for

several reasons. First, some anomalies “go away” after a few days, e.g. snow that melts or slides off,

and do not need any action. In contrast, some anomalies “persist” for days, e.g. electrical fault or

wet dust/leaves, and require immediate action. Second, manual inspection is quite labor-intensive

and expensive, possibly requiring travel to the sites that are remote, which is especially true for

utility-scale solar sites that typically do not have on-site maintenance. Third, classification shows

the difference between shading and other types of issues, which is useful. If fault is small compared

to a site’s size, the operator may decide to postpone an inspection until next regular inspection.

To address these challenges, we present SunDown, a sensorless approach for detecting and

classifying per-panel faults in small-scale solar arrays. Prior work on per-panel solar anomaly

detection are based on time series [19] or statistical [5, 35] analysis of a panel’s output or use of

sensors such as a pyranometer [16] to detect faults. In contrast, our approach uses the actual output

from other nearby panels to estimate each panel’s expected output and find anomalous deviations

from this estimate. SunDown assumes that per-panel generation information is available from the

array—an assumption that holds true for any installation that uses micro-inverters or DC power

optimizers—and uses a model-driven approach to detect when the panel output deviates in an

anomalous manner from the model-predicted output. Our approach is based on machine learning

and can detect physical anomalies such as snow obstructions, leaves, and electric faults at panels.

Our approach seeks to identify and alert solar owners of such issues in a timely manner so that

they can be rectified to avoid production losses.

In designing, implementing, and evaluating SunDown we make the following contributions.

• We present a model-driven approach, based on machine learning, that leverages correlations

in the generated output between adjacent panels to predict the expected output of a particular

panel and flags anomalies when the model predictions deviate from the expected values.

Further, our approach can handle and detect multiple concurrent faults in the system.

• We present a random forest-based classification technique to classify the probable cause

of the observed fault. To validate our approach, we construct two labelled datasets of solar

anomalies: a two year dataset from a real-home with real snow cover anomalies that we hand

label using ground truth information, and a solar anomaly dataset that we construct with a

twenty-panel array by injecting synthetic faults such as dust, leaves, and open circuit faults.

Since there is a dearth of solar anomaly datasets, we release both datasets and our code as

open-source tools to the community.
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Fig. 1. A residential solar array (right) with 31 panels deployed on four roof planes, and real-time panel-level
generation data from the array (left)

• We conduct a detailed experimental evaluation of our methods. We show that our approach

has a MAPE of 2.98% when predicting per-panel output, which shows the efficacy of using

neighboring panels to performmodel-driven predictions. Our results also show that SunDown

is able to detect and classify faults such as snow cover, leaves, and electrical failures with

99.13% accuracy for single faults and is able to handle concurrent faults in multiple panels

with 97.2% accuracy. Our results also demonstrate that the approach is robust to the solar site’s

asymmetries (different orientation, different shading), as the solar site used in experiments

has many asymmetries (as shown in Figure 1).

2 BACKGROUND
In this section, we present background on residential solar arrays and solar anomaly detection.

2.1 Residential Solar Arrays
Our work primarily focuses on residential solar arrays, such as ones often found on residential

rooftops. Such installations are typically small-scale installations with capacities of 10kW or less

and comprise a few to a few dozen solar panels (see Figure 1). Since we are interested in monitoring

anomalies and faults at a per-panel level, we assume that the power generation of the array can be

monitored at a per panel level.

This is a reasonable assumption in practice since many residential arrays are equipped with

micro-inverters (e.g. Enphase micro-inverters [3]) or DC power optimizers [4] on each panel that are

designed to track and independently optimize the power generation of each individual panel. Such

installations, which are now commonplace, are advantageous since they maximize the total system

output even for deployments that span multiple roof surfaces and under partial shading-effects. As

shown in Figure 1, such systems provide real-time per-panel generation data, which is essential

for our approach. Other than knowledge of per-panel output, we do not assume any other sensors

or instrumentation on the residential solar installation. Thus, we seek to develop a sensor-less

approach for per-panel solar anomaly detection.

2.2 Solar Generation
It is well-known that solar generation at any site depends directly on the amount of sunlight –

solar irradiance – received at that location. The solar irradiance is a function of the latitude and

longitude of that location and the season of the year [22]. Of course, the weather—specifically cloud

cover—can reduce the solar irradiance at a particular site. For the purpose of this work, we assume

that per-panel solar generation on any given day can be reduced to two factors: transient, which
comprises of factors that temporarily impact power output, and faults which comprise of factors

that have a prolonged negative impact on output.
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Transient factors include weather conditions such as cloud cover, wet panels caused by rain or

dew, as well as site specific factors such as shading caused by nearby trees or other structures. We

can classify transient factors into two classes—common or local. Common transient factors are

those that impact all panels of a particular site such as overcast condition or rain. Local factors are

those that impact a particular panel, or a group of panels, but not all of the panels at that site. For

example, many shading effects may impact a portion of the site, depending on the foliage and the

location of the sun.

2.3 Solar Faults
Anomalies (also referred to as faults) in our case are defined to be factors that cause a persistent

drop in production but can be rectified by the owner of the site. We are particularly interested in

the following three types of faults (1) snow cover on one or more panels, (2) partial occlusions such

as bird droppings, dust or leaves on a panel, (3) electric faults such as module failure, short circuits

or open circuits. These faults cause either a reduction in output or zero output for a particular

panel or a subset of panels.

Due to their close proximity to one another, multiple panels in a residential array may experience

the same fault—for example, snow may cover multiple adjacent panels (or even the entire system),

resulting in concurrent faults. Of course, a site may also suffer a full system outage, which is also a

fault but is easier to detect than those that cause partial outages or partial output reduction.

2.4 Other Sensorless Approaches
There have been other sensorless approaches for solar fault identification, both at a system and

per-panel level. There is prior work on solar fault detection and analysis using drones and computer

vision, which does not require instrumentation on the solar site [6, 23]. There is also prior work that

uses historical data to model the power output of the panel or system under different conditions

and uses this model to predict the current output and compare it to observed values. For instance,

such approaches have been based on time series [19] or statistical [5, 35] analysis of a panel’s

output or use of sensors such as a pyranometer [16] to detect faults. However, historical data

dependency prevents using these approaches for newer installations until enough history (6+

months) is available. Spatial methods do not need as much temporal history, since they exploit

spatial relationships. Additionally, even state-of-the-art models that use historical data for predicting

future solar power generation, e.g., hybrid physical and ML models, have an ≈20% Mean Absolute

Percentage Error (MAPE) when trained and tested at the same solar site [11]. Such a large error is

not suitable for detecting and classifying anomalies that experience small deviations. As a result,

rather than using temporal correlations in output on a particular panel, our approach uses spatial
correlations that exist between outputs of neighboring panels, a complementary approach that

enables a model to be trained for a site without requiring a lot of historical data (e.g., new sites).

2.5 Problem Statement
Consider a solar array with N solar panels. We assume that the panels are mounted on a residential

roof and may be mounted on one or multiple roof planes. Note that in the latter case, panels will

have different tilts and orientations. We assume that the power generated by each panel can be

monitored in real-time and that the weather at the site is also known (e.g. from a weather service).

Given such a setup, our problem is to design a technique that monitors the power output of each

panel and the entire system, and labels the observed output in each time interval (e.g. a day) as

normal or abnormal. Further, our technique should identify specific solar panels in the system that

are experiencing faults and also determine possible cause of the fault (e.g. snow, partial occlusion,

or electric fault).
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3 PER-PANEL SOLAR ANOMALY DETECTION
In this section, we describe our model-driven approach for per-panel solar fault detection and how

we can build on this approach to perform multiple fault detection. We first describe the basic idea,

followed by the details of our models and algorithms.

3.1 Basic Idea
Consider a solar installation with N panels. Suppose that k panels are experiencing an anomaly

that result in a reduction, or loss, of output from those panels. Initially, let us assume k = 1 (only

one panel out of N is faulty). Later on, we show how our approach can be extended to handle

multiple, concurrent faults where k > 1.

Since all N panels are mounted on the same roof in close proximity of each other, it follows

that they experience highly correlated weather conditions, and produce similar output. Thus, our

"sensorless" approach first constructs a model to predict the expected output of a panel from n
neighboring panels (n ≥ 1). For example, a simple predictor is one that uses the mean output of n
neighboring panels to estimate a particular panel’s output. Under normal conditions, since adjacent

panel outputs are highly correlated, the model prediction will match the observed output of that

panel with high accuracy. Note that any n out of the available N panels can be chosen to model

the output of a particular panel. A useful heuristic is to use the “closest” n panels to the one being

predicted or to use the n panels on the same roof plane since they will have higher correlations than

those on a different roof surface of the same house. In our evaluation, we experimentally evaluate

the accuracy of these heuristics and also evaluate the value of n that yields sufficient accuracy.

When a panel experiences an anomaly, however, the model predictions will continue to estimate

the "normal case" output of that panel, while the observed output will deviate from this normal

case. If the deviation is "large" and persists over an extended period of time, it is indicative of a fault,

rather than an error in the model prediction. The quantitative value of “large”, in terms of expected

power deviation, depends on the expected error in the predictor used to get the panel’s expected

normal output. The deviation should be greater than the expected error in the predictor. Based

on the expected error, the threshold for an anomaly can be set to a value >(expected error). Any

observed deviations greater than the expected error are then labeled as an anomaly. The amount of

time the deviation should persist is configured to avoid shading or similar effects from raising false

positives. In general, an anomaly should persist for a period of days, rather than minutes or hours.

As we show in Section 4, the right number of days can be empirically determined using analysis of

historical anomalies data. The cause of the fault can be separately determined by analyzing amount

of loss or the power pattern exhibited by the panel. Such a model-driven approach only uses the

observed output of panels to detect anomalies—no other instruments or sensors are needed for

anomaly detection unlike some other approaches [8].

3.2 Model-Based Predictions
Based on the above intuition, we now present two model-driven techniques for predicting the

power output of an individual panel using neighboring panels. Our first model is based on linear

regression and uses only power output of panels as input parameters to make predictions. Our

second model is based an a probabilistic graphical model and half-sibling regression.

3.2.1 Linear Regression-Based Model. Since the power generated by solar panels in close proximity

of one another are highly correlated, we can use regression to predict the output of a panel given

the observed output of neighboring panels.

Let Pi denote the observed power output of panel i at time instant i . Let us assume we wish to

predict the output of panel i using n other panels. Typically we can choose n nearest panels, or
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SolarClique SunDown

Per-Panel faults No Yes

System-wide faults Yes Yes

Multiple faults No Yes

Anomalies

Detected

System-wide

electrical

Snow, electrical,

occlusion

Table 1. A comparison of the state-of-the-art SolarClique system and our SunDown approach

n panels on the same roof plane, out of the N total panels on the roof. A linear regression model

allows us to estimate the output of desired panel as a linear function of the others:

Pi = wiPi1 +w2Pi2 +w3Pi3 + ... +wnPin + ϵi (1)

where X = {i1, i2, ..., in} is the set of n panels used to model the output of the ith panel. We can

use linear regression to estimate the weightwi that minimize the error term ϵi .
Such an approach yields N distinct regression models, one for each panel in the system, where

each model makes prediction using the observed output of n other panels. To determine if a panel

has a fault, we compare the model predictions at time t , Pi (t) with the observed value P̂ . If the
difference between the model predictions and observed values is large and persists over a period of

time (e.g., a day or multiple days), the approach flags that panel as faulty.

3.2.2 Graphical Model and Half-Sibling Regression. Our second model is based on a recently

proposed machine learning technique called half-sibling regression that uses a Bayesian approach

to remove the effects of confounding variables [33]. This approach has been used by astronomers

to remove noise from measurements of multiple telescopes observing the same phenomena. The

main intuition behind the approach can be understood from the astronomy use-case. Suppose

that n + 1 telescopes are observing the same object such as star. The observations will have some

“common” noise introduced by factors such as air pollution or haze that impact visibility of the

object. Furthermore, each telescope will have local factors such as instrument calibration error that

introduce additional local errors. If we use observations of n telescopes to estimate the expected

observation of the (n+1)-st instrument, and take the difference between the observed and predicted

values, we are left with the local errors (“anomalies”) at that instrument. In our case, we have n + 1

solar panels “observing” the sun—their power output represent their observations of the sun. All

panels see common factors such as clouds that introduce similar output reductions in the power

values. Further, each panel has local factors such as shade (transient factors) or faults that can result

in additional reductions in the power output. If we use n panels to predict the output of the n + 1-st

panel using a Bayesian model, the difference between the predictions and observed output should

isolate local factors including the effect of faults. This is the intuition behind using the Bayesian

approach of [33].

More recently, this approach was used in a system called SolarClique[21] to predict the output of

an entire array using nearby solar arrays. We draw inspiration from the half-sibling regression paper

[33] and SolarClique [21] for SunDown’s anomaly detection, but point out important differences

between the SolarClique method and our approach as shown in Table 1. First, SolarClique is

designed for system-level predictions (predicting the total generation of an entire array) and does

not have the capability of making fine-grain per-panel predictions, which is the focus of our method.

Second, a key technical limitation of SolarClique is that it assumes a single fault can occur at a time,

and that the system is not capable of scenarios where multiple arrays are faulty. This is a reasonable

assumption for SolarClique since it uses n arrays from n different homes to predict the output

of a specific home, and faults across arrays and homes can be assumed to occur independently.

In our case, since panels are in close proximity to one another, the same fault (e.g., snow) can
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Fig. 2. Graphical model representation

impact multiple panels, and faults therefore no longer occur independently. Since the independence

assumption of SolarClique does not hold in our case, a key technical improvement over prior work

is our ability to handle multiple faults (as discussed in the next section). For simplicity, we first

assume a single fault in the entire system and present our approach. We then relax the assumption

in the next section and show how the basic model can be extended to handle multiple concurrent

faults. A final difference is that SolarClique did not focus on fault classification (and only detects

large system-level electrical failures) while SunDown can identify multiple types of faults, including

snow cover, occlusion faults and electrical faults.

To describe our Bayesian model, let P be a random variable denoting the power output of a

particular panel. Let X denote a random variable representing the power output of n other panels

in the system. Hence, X is a vector of size n. Let C denote the confounding variables that impact

both X and P . In our case, C denotes common confounding variables such as cloud cover that have

the "same" impact on panels. Let L denote the local factors and asymmetries between panels that

impact the output of an individual panel. L will include transient factors, including partial shading,

as anomalies that locally impact P .The relationship between P , X , L, and C can be captured using

a (causal) graphical model as shown in Figure 2. Since the output of each panel can be directly

monitored, P and X are observed variables, while C and L are latent unobserved variables.

As can be seen, P depends on both L andC while X depends only onC (and is independent of L).
C impacts X , and when conditioned on P , P becomes a "collider", making X and L dependent. To

reconstruct L using half-sibling regression, we assume the following additive model

P = L + f (C) (2)

Since C is unobserved, we can use X (which is observed) to approximate f (C). If X exactly

approximate the function f (C), we can then compute f (C) on E[f (C)|X ]. Even otherwise, if X is a

sufficiently large vector, it can yield a ground approximation. Thus, we can use X to predict P and

recover L from Equation 2 as

L̂ = P − E[P |X ] (3)

Note that L̂ estimates both anomalies and transient factors, and the impact of transient factors

must be removed from L to estimate the anomaly.

Given these concepts, our algorithm to estimate the amount of production loss due to anomalies

is as follows:

We first use regression to estimate P using X . This is similar to the linear regression method

from the prior section. The regression yields E[P |X ] - an estimate of P given the observed output of

n neighboring panels that constitute X . Since P itself is observed, subtracting E[P |X ] from P yields

an estimate of the output loss L̂ due to transient factor and anomalies as shown in Equation 3. A key

difference between linear regression model of section 3.2.1 and here is that we use bootstrapping to

construct multiple regression model by subsampling the data (instead of a single regression model)

and use an ensemble method based on Random Forest that uses the mean of multiple models to

estimate E[P |X ].
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f1(PB, PC) f2(PC, PD)

PA

PB PC PD

Compare

Clean

NormalFaulty

P̄A

Prediction

True Output

FaultyNormal

Clean

AB C D

Noisy Clean

P̄A

Fig. 3. A forecasting model is used to ensure non-noisy inputs to our Bayesian model.

Next, since L̂ contains effects of transient factors such as shade on panels as well anomalies, we

must remove the impact of transient factors to obtain the "true" anomalies. We can use time series

decomposition to extract the seasonal component that represents shading effect that occur daily

at set time periods and remove it from L̂ [21]. The remainder of L̂ represents production loss at

that panel due to any anomalies. Under normal operation L̂ will be close to zero (no anomalies and

no loss of output). When L̂ is significant and persistent over a period of time, our model-driven

approach flags an anomaly in the panel.

3.3 Handling Multiple Concurrent Faults
Both our regression and Bayesian models use the power output of n panels to predict the expected

output of another panel. A very important assumption is that the n panels being used as inputs to

the model are non-faulty and hence be used to predict the normal case output of another panel. An

anomaly is flagged when the model prediction of normal case output deviates from the observed

output, indicating the presence of an anomaly.

This approach works well when there is only one faulty panel in the system - which implicitly

implies that all remaining panels are non-faulty and any model that uses some of these remaining

panels to make predictions will have “clean” non-faulty inputs. However, due to the close proximity

of panels, anomalies such as snow cover, dust, leaves, are likely to impact multiple panels. In this

case, some of the inputs to the model may come from faulty panels, causing model prediction to

have high errors. Of course, if n is made large and only a small number of panels are faulty, the

model may be able to tolerate the "noise" in a small number of inputs and still produce reasonable

accurate prediction. However, many residential rooftops may have a small number of panels, which

means n can not always be large. Hence, we need an explicit method to tolerate the impact of

multiple concurrent faults in the system.

Observe that our models use any n out of N total panels to predict the output of panel i . Thus, it
is possible to construct multiple models for each panel by choosing different subsets of n panels out

of N , and then using them as inputs to predict the output of panel i . In the normal case (no faults),

all of these models show similar predictions for panel i’s output. However, when multiple panels

are faulty, any model that uses faulty panels as input will have higher errors while a model that

uses all non-faulty inputs will continue to provide good predictions. Our goal then is to construct

multiple models for each panel using our Bayesian or regression method, and then choose one of

these models at each instant that uses non-faulty inputs.

To do so, we need to distinguish between faulty and non-faulty inputs. However, since the models

are themselves being used to detect faults, we need a different method to determine which inputs

are possibly faulty. To do so, we use a solar forecasting approach that predicts the output of the

solar panel based on weather forecasts. There is extensive work on solar forecasting using weather
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forecasts and any such model can serve our purpose. We use a machine learning forecasting-

based model that uses the location of the system (longitude and latitude), time of day, past power

observations and near-term weather forecasts (e.g., sunny, cloudy) to estimate the output of a

panel [22]. This model, and many others, have been implemented into the Solar-TK open-source

library [9], which we leverage to design a custom forecasting model for each panel in the system

using near-term future weather forecasts.

Suppose that Pi (t) is the estimate of power output of a panel i based on this forecasting model.

If Pi (t) − P̂i is large, it implies that expected output differs from the prediction and the panel is

possibly a "noisy" input. Our per-panel forecasting models perform these prediction for each panels

and labels it as "noisy input" or "normal input". Any model that uses one or more noisy panel as an

input should be eliminated from consideration for anomaly detection purposes. That is, SunDown

chooses any regression or Bayesian model (out of multiple models for a panel constructed from

different subsets comprising n panels) such that all inputs to that model are labelled normal.

Consider the following example to illustrate the process (Figure 3). Suppose that a solar rooftop

install has 4 panels: A, B, C , D. We wish to predict the output of panel A using two other panels.

Suppose both A and B are faulty. Let us assume we have the following two half-sibling regression-

based Bayesian models, f1 and f2 to predict PA, the power output of panel A

PA = f1(PB , PC ), PA = f2(PC , PD ) (4)

where model f1 predicts A using panels B and C as inputs, while f2 predicts A using C and D.
Our approach first predicts PA, PB , PC , and PD using per-panel machine learning solar forecasting

models for each of the four panels [9]. Since A and B are faulty, they get labeled noisy inputs.

Hence, f1 is eliminated from consideration since one of its inputs, PB , is a noisy input and f2 is
chosen for prediction since both its inputs, PC and PD , are labelled "normal". Using model f2 yields a
better estimate for PA than model f2. Note that, doing so enables us to handle concurrent faults–we
can avoid using faulty panels as model inputs, and at the same time, use our Bayesian method to

identify the presence of multiple faults.

We note that our solar forecasting models are only used to identify noisy model inputs rather
than to determine anomalous solar output—although our solar forecasting models also provide an

estimate of the panel’s output, they are not suitable for anomaly detection. This is because they

use weather forecasts of cloud cover, along with other parameters, to estimate a panel’s output.

Forecasts of future weather are inherently error-prone, which means the forecasting model will also

have higher errors. Using a solar forecasting model directly for anomaly detection will also have

higher false positive (due to model errors). A higher error is acceptable when detecting noise in

input data since noisy inputs due to anomalies will cause “large” deviations and are simple to detect.

In contrast, the Bayesian approach uses actual power output observations to estimate a panel’s

output for the purpose of anomaly detection, which yields a more accurate model and reduces

changes of false positives. As shown in Section 5.1.1, our model has less than 3% error. Consequently,

we use forecasting models to only identify noisy inputs and eliminate Bayesian models with noisy

inputs as shown in Figure 3; incorrectly labeling a panel as noisy due to forecasting error only

causes some of the models to be suppressed for anomaly detection, and does not impact accuracy

of the remaining models for finding faulty panels.

4 CLASSIFYING SOLAR ANOMALIES
While the previous section presented model-driven approaches to detect the presence of anomalies

in one or more panels, in this section, we present a classification approach to determine the possible

causes of the output loss seen at the panel(s).
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Fig. 4. Residential home power output on an example day under (a) normal condition, (b) partial shading on
some panels on east side, (c) snow covering on some of the panels.
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4.1 Solar Anomaly Open Dataset
To assign a possible cause to an observed output loss, we must analyze the observed power pattern

and match it to the "power signature" exhibited by different type of solar faults. However, this

requires that we have ground truth data for various type of faults, which is challenging since there

are no open datasets of solar faults available for research use (solar farm operators likely have such

data but have not released it to others). Consequently, we need to gather our own data with ground

truth information on solar faults.

Our anomaly dataset contains data from two residential scale solar installations:

(1) a 31-panel, 9kW solar installation (Figure 1 top) that experienced multiple snow cover

anomalies (Figure 1 bottom) over its two year lifetime

(2) a 20-panel ground mounted solar installation (Figure 7) where we systematically introduce

anomalies such as dust, leaves, electrical faults, etc., to mimic real-world faults and measure

its impact on the output.

We discuss each dataset in more detail before describing our classification method.

4.1.1 Snow Anomaly Dataset. This dataset comes from a residential solar array deployed on a home

in Northern America (location details removed for double blind renewing). The house contains 31

rooftop panels, mounted on four different roof planes, as shown in figure 1(bottom). Each panel is a

320W LG panel with an Enphase micro-inverter that can optimize the panel’s output independently

of the rest. As noted earlier, micro-inverters optimize and report panel-level generation data, which

is a prerequisite for our models.

We have been gathering data from this system for over two years and have per panel generation

information at 5 minute granularity from September 2017 to February 2020. We have also gathered

weather data for the location from DarkSky and NOAA weather service.

The only real anomaly encountered by this system over the two year period is snow cover,

following a snow storm (the area receives frequent snowfall in the winter). Depending on how

long the snow sticks on the panels following a snow event, snow-covered panels may produce little
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(a) Lower roof under snow (b) Snow event email alert

Fig. 6. Snow anomaly dataset

or no output. As snow melts, some panels generate output, while others stay covered with snow

(Figure 4(c) & 6(a)).

We have two sources of ground truth to label snow faults. First, the Enphase system sends an

email to the homeowner when it observes near zero output for an entire day, as shown in figure

6(b). The email indicates a "possible production" issue at the system. Second, DarkSky and NOAA

provide past weather data, such as snow events and the extent of the snowfall at an location.

We use both sources of information (which match closely with each other) to manually inspect

the per panel generation data on a snow day and the following several days. We then hand label

each panel’s output as normal (if it produces any output) or as a snow anomaly (if the panel output

is near zero). This yields a hand-labelled dataset of snow anomalies.

4.1.2 Solar Anomaly Dataset. Using our 20-panel ground mounted experimental array and sensors

to measure its power output, we carefully introduced several types of anomalies onto specific panels,

and measured its impact on the power output. We conduct several data gathering experiments over

a period of several weeks under different conditions (sunny, partially overcast, overcast etc) and

gathered data for the following anomalies.

(1) Leaf occlusion: We introduced different number leaves on panels (partial occlusion anomaly)

and measured its impact

(2) Dust occlusion: We added different amounts of dust on the panels and measured its impact

(3) Water drops occlusion: We add varying amount of water drops on the panel and measure its

impact. This is designed to mimic morning dew on panels, which is not a true anomaly but a

weather effect

(4) Open circuit fault: We used a variable potentiometer to introduce a high resistance seen by

the panel to mimic an open circuit fault and measured its impact.

This hand-crafted anomaly dataset, along with photographs and labels, provides an additional

source of data for our experiments. For example, Figure 7 shows leaves on the panel that emulate a

partial occlusion fault. Figure 4(a) and (c) depicts the output of the panels in normal conditions and

under a snow fault, respectively. Figure 10 (a) and (b) illustrate the power output under synthetically-

generated open circuit fault and a partial occlusion fault. We have released both datasets to the

research community.

4.2 Classifying Anomalies
Given anomalies detected by our Bayesian model we use a random forest classifier to label the

possible cause of the fault for each panel that is faulty. The classifier needs to distinguish between

three types of faults: snow, partial occlusion and open circuit. Note that partial snow over on a

panel and partial occlusion faults both result in diminished, but non-zero output. Full snow cover

on a panel and open circuit faults both yield zero output. To distinguish between these cases, we

first sample 40 randomly chosen points over an entire day and compute the percentage reduction

in power output when compared to the model predictions for each of these points. This power
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Fig. 7. A synthetic leaf occlusion fault in our experimental array.

loss vector is a key feature to our classifier. We also use two other features: month of the year

and snow depth values from NOAA weather service. We train our random forest classifier using a

training dataset of real snow and synthetic anomalies. Depending on the season (winter versus other

seasons) and the observed power loss over a period of time, our classifier can label the probable

cause of fault for each panel. In the current set of experiments, if the deviation greater than the

specified threshold persist for two days, we classify the deviation as the anomaly. Our approach

can also label system-wide faults, caused either by a system-wide electrical failure or full snow

cover on the entire system, both of which cause near total loss of power output.

5 EXPERIMENTAL EVALUATION
We evaluate SunDown by quantifying (1) the accuracy of model-based power inference where

we infer the output of a single panel using nearby panels, (2) the impact of parameters such as

number of panels, roof geometry, and weather, and (3) the accuracy of our anomaly classification.

We quantify the accuracy of predicting a panel’s output using Mean Absolute Percentage Error

(MAPE) between the inferred output and the actual solar generation, as below.

MAPE =
1

m

m∑
t=1

���PO (t) − PI (t)

P̄O

��� (5)

wherem is the number of samples, PO (t) is the observed solar power at time t , PI (t) is the inferred
power at time t , and P̄O is the mean of observed power generation. Equation 5 is an alternative

form of standard MAPE where we replace the denominator comprising a single observed value

by the mean of all observed values. The alternative form avoid divide by zero issues when the

denominator (and observed value) are zero. For the anomaly detection and classification tasks, our

goal is to correctly classify all the different anomalies. We use four different metrics to quantify

different aspects of the classification task: accuracy, precision, recall, and F1 score. The accuracy is

computed by dividing the number of correctly classified anomalies by the total number of anomalies.

Precision quantifies what proportion of predicted anomalies are true anomalies. Recall quantifies

what proportion of actual anomalies are predicted as anomalies. Finally, F1 score presents a balance

between precision and recall: if either precision or recall is low, F1 score will be low. The different

metrics are computed as below.

Accuracy =
TP +TN

N
, Precision =

TP

TP + FP
(6)

Recall =
TP

TP + FN
, F1 score =

2 × Precision × Recall

Precision + Recall
(7)

where N is the total number of instances,TP is the number of anomalies correctly classified,TN
is the number of normal days correctly classified, FP is the number of normal days classified as

anomalies, and FN is the number of anomalies misclassified as normal days. Accuracy is used to
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evaluate the overall model’s performance, while sensitivity and specificity are used to test how

accurate the model is to correctly detect the anomalies and normal cases.

5.1 Prediction Model Accuracy
We begin by evaluating the accuracy of predicting the power output of an individual panel using

neighboring panels.

5.1.1 Machine Learning Model. To evaluate the accuracy of model inference, we choose a test

data only from the days where the site experiences no anomaly. We then use the normal days

of the home dataset to train our linear regression and graphical model. We also compare their

performance with a naive approach that infers the power output of a panel as the mean output

of n other panels. We then compare the model predictions using a test dataset and compute the

MAPE values for each approach. As shown in Figure 8(a), the MAPE values for Bayesian model,

linear regression, and naive approach are 3%, 4%, and 8.6%, respectively. The naive approach has

the worst accuracy since it all panels produce similar output, which is not true in many cases due

to panel level variations. Linear regression works well when the output of different panels are

highly correlated and have a linear relation between them, which is not true when some of the

panels experience partially shading. Our graphical ensemble learning approach is able to model

non-linear relationships and yields highest accuracy and a tight confidence interval. We use the

graphical model for the subsequent experiments, unless stated otherwise.

5.1.2 Impact of Training Data Size . Next, we evaluate model accuracy for different amounts of

training data. If a model requires a lot of training data for good accuracy, it can hinder its use

for recently deployed solar sites or for the sites where long-term panel level data is not available.

We vary the training data size (by randomly choosing a certain number of days) and evaluate its

accuracy for predicting output using a test dataset. Figure 8(b) demonstrates that our model can

achieve a decent accuracy and a 10% MAPE with only one day of per panel data. If the number of

days is increased to 4, the MAPE drops to 3.5% and stays almost constant beyond four days.

Results: Our graphical model can predict per-panel output with 2.98% MAPE and outperforms

linear regression and a naive averaging approach. The random forest-based ensemble graphical
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model does a better job of capturing non-linear relationships among less correlated data than linear

regression. While model accuracy increases with training data size, even only four days of training

data yield good accuracy. This result also informs our selection of the threshold for power deviation.

The expected (mean) error for our graphical model is 2.98%. However, since the maximum error we

observe for our model is ≈5%; we set the anomaly threshold to be > 5%; any deviation greater than

> 5% is labeled as an anomaly.

5.2 Impact of parameters
We next investigate various factors that impact the inference accuracy, including number of panels,

geometry of the solar deployment and weather.

5.2.1 Impact of Number of Panels . The individual solar panels at a site can demonstrate subtle

variations in their solar output, despite their close proximity, due to panel-level dust, different tilt

and orientation angles, and panel level physical faults such as cracked glass. To evaluate how many

panels are need by a model to provide adequate accuracy, we vary n (the number of panels used by

the model as input) and compute MAPE for different n. Figure 9 shows inaccuracy is high when

using less than 3 panels for inference. The accuracy improves as number of panels is increased to 5

and shows diminishing gains beyond that. The model has an average MAPE value of only 3-4% and

a very tight bound, when using 5 panels, as compared to 9% MAPE with single panel. This result

suggests that SunDown requires as little as 5 panels to be highly accurate. A typical residential

site consists of 2-10kW installations and contains 6-30 solar panels. As SunDown requires only

around 5 panels while yielding high accuracy, it is applicable to all types of solar sites, residential

or otherwise.

5.2.2 Roof Geometry Impact. The output of a solar panel depends upon its tilt and orientation,

among other factors [12]. Since a residential array may be installed on multiple roof planes, it is

preferable to use panels on the same roof plane to predict others, since they will have a similar tilt

and orientation and will exhibit higher correlations.

To evaluate the effect of roof geometry, we split the home dataset into four sub-datasets based

on the four roof planes where the panels are deployed. We created four graphical models to predict

the power output of ith panel by using n = 7 panels as inputs. For the east roof, west roof, and

lower roof cases, all 7 input panels are mounted side by side on the same roof plane facing the

same direction. In the fourth scenario, we created a mixed dataset by combining 2 panels from each

east roof and west roof datasets, and 3 panels from the lower roof dataset. Figure 9(b) illustrates

the inference accuracy as the geometry of panels used for inference varies. For the same roof plane,

the model is highly accurate and the MAPE value is between 3% to 3.2%. The large variation for

the east roof is due to the partial shading on some of the panels on the roof, leading to inaccurate

inferences. To isolate the effect of shading, we used Solar-TK’s shade-adjustment module that

provides a shading factor, as a value between 0 and 1, that indicates the level of shading on a solar

site, where 0 means no shading and 1 means fully-shaded. We adjust the output of our shaded

panels by this factor to get the expected power without shading. We ran the experiments both

with and without shading filtered out, and got the same results. This results illustrates that 1) our

approach can filter shading out if necessary, and 2) that in this case, our approach is robust to any

shading related anomalies, which tend to be small and transitory. The average MAPE of 5.5% for the

mixed dataset demonstrates that our model produces a reasonable accuracy even when input panels

are chosen from different roof planes. Thus, when knowledge of the roof geometry is available, it

should be exploited, but the model works well even for systems where the roof geometry may be

unknown causing the model to use panels from different roof planes for inference.
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(a) Synthetic Open Circuit (b) Synthetic Object Covering (c) Synthetic Multiple Faults

Fig. 10. Synthetic fault injection with (a) open circuit fault, (b) leaves covering fault, (c) multiple leaves
covering faults

5.2.3 Impact of Weather. The weather at a solar site, primarily cloud cover, impacts the power

generation of a site. On a sunny day, all the solar panels produce similar amount of power. However,

on a cloud day, scattered clouds may only cover one or few of the panels leading to power variation

across panels, which can complicate inference. Figure 9(c) illustrates the effect of weather on the

accuracy of the inference task. Our model achieves similar mean accuracy on both sunny and

cloudy days, indicating it performs well regardless of weather. The higher variance in MAPE on a

sunny day is due to shading from nearby structures, that has a more prominent impact on a sunny

day over a cloudy one.

Results: Our experiments show that the number of panels used for prediction as well as the roof

geometry play an important role in the model’s performance. We find that model yields higher

accuracy when five or more panels are used for predictions and when these panels are co-located

on the same roof plane. The weather conditions, however, do not impact model accuracy.

5.3 Anomaly Classification Accuracy
The previous section evaluated the accuracy of our model in predicting the output of a panel using

nearby panels. We next evaluate the accuracy of our model-driven approach and its classifier in

detecting and classifying anomalies, respectively. We compare the accuracy of our approach against

a baseline that uses a simple linear regression model to predict the panel-level output and detect

anomalies. The linear regression model is the same as shown in Figure 9. The classification aspect

of the linear regression-based approach are the same as our bayesian approach: deviations greater

than 5% that persist for at least 2 days are considered anomalous. The common anomalies we

consider include snow fault, open circuit, and partial occlusions due to leaves. Although, others

factors such as partial shading also result in the loss of energy, we do not consider shade to be an

anomaly since it it is a transient phenomena and does not need corrective action.

Our home dataset already includes real snow faults that are labelled and we evaluate the accuracy

of our classifier on identifying these snow faults. We then use the synthetic faults from our solar

anomaly dataset and synthetically inject them into the home data set by introducing synthetic

single panel faults as well as concurrent fault and evaluate the accuracy of our classifier. Figure 10

presents per-panel data for a typical day when electric fault or object covering anomaly has been

injected into one or many panels.

5.3.1 Snow Fault Detection. We first evaluate the ability of the baseline method and our classifier

in detecting snow faults in the home dataset. Recall that the data set is labelled as normal or snow

for each panel. We extract the features from daily power output, which include the Pearson’s

correlation coefficient, ratio of maximum observed power and the nominal panel capacity, and

weather data, such as snow and cloud cover, and use them as inputs to our random forest classifier.

Figure 11(a) and Figure 12(a) show the confusion matrix of the baseline method and our classifier,

respectively. Both our approach and the baseline method have the same observed power output
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Fig. 11. Classification accuracy for our baseline linear regression anomaly detection method for (a) system-
level faults, (b) single panel faults, (c) multiple panel faults.
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Fig. 12. Classification accuracy for (a) system-wide snow faults, (b) single panel faults, (c) multiple panel
faults.

at the system-level and therefore have the same accuracy since the two approaches only differ in

the anomaly detection part of the approach. Table 2 and Table 3 shows that both methods are able

identify system-level snow faults with an accuracy of 99.13%, precision of 0.9859, sensitivity of

1.00, and the F1 score of 0.9947. The high values for precision, recall, and F1 score means that even

the baseline method does really well when identifying the system-level faults. We note that snow

faults seen in our dataset tend to be system-wide faults, where all panels get covered with snow

after a snow event and exhibit a snow fault concurrently. While it is certainly possible for only

some panels to have snow cover (e.g., if snow melts unevenly across panels), our dataset presently

does not have such faults.

5.3.2 Single and Concurrent Fault Classification. Since all observed snow faults in our dataset were

system faults, we next show that our approach is still capable of fine-grain anomaly detection and

classification of a single fault, and that it is also capable of detecting concurrent faults in a subset

of the panels.

To do so, we use our solar anomaly dataset and choose the partial occlusion and open circuit

anomaly from the dataset and inject these faults into a single, randomly chosen, panel of the array,

where different panels have faults injected into them on different days. We first use the baseline

method and our random forest classifier to identify the type of fault. We next use our model to

detect the presence of the fault and our random forest classifier to identify the type of fault. We next

inject multiple concurrent faults of all types—snow, occlusion, open circuit—into the array using a

similar methodology and attempt to detect and classify each fault using our model and classifier.

Note that we need to use our concurrent fault detection approach in this case. For multi-panel fault
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Classification Accuracy Precision Recall F1 score

Single, panel-level (open-circuit) 98.78% 1.00 0.9583 0.9787

Single, panel-level (occlusion) 80.49% 0.7188 0.7667 0.7419

Multiple, panel-level (open-circuit) 93.84% 0.8696 0.8511 0.8602

Multiple, panel-level (occlusion) 88.15% 0.6731 0.8140 0.7368

Multiple, panel-level (snow) 86.73% 0.7222 0.7500 0.7358

System level (snow) 99.13% 0.9895 1.00 0.9947

Table 2. Classification Metrics for our baseline linear regression anomaly detection method.

Classification Accuracy Precision Recall F1 score

Single, panel-level (open-circuit) 98.78% 1.00 0.9583 0.9787

Single, panel-level (occlusion) 98.78% 0.9677 1.00 0.9836

Multiple, panel-level (open-circuit) 98.56% 0.9400 1.00 0.9691

Multiple, panel-level (occlusion) 99.53% 0.9773 1.00 0.9885

Multiple, panel-level (snow) 97.16% 1.00 0.8966 0.9455

System level (snow) 99.13% 0.9895 1.00 0.9947

Table 3. Classification Metrics for our model-based approach.

classification using the baseline method, we use the per-panel baseline fault detection method for

all the panels individually.

Figure 11(b) and 12(b) show the confusion matrix of classifying single faults in the array using

the baseline method and our proposed approach. Table 2 and Table 3 show that both the baseline

method and our approach show the same, high accuracy for single-panel open-circuit faults at

98.78%. The values for precision, recall, and F1 score are 1.00, 0.9583, and 0.9787, respectively. Both

approaches yield the same result as open-circuit faults are very easy to identify. The real benefit

of our approach is evident for single-panel occlusion faults where our model achieves a 98.78%

accuracy as compared to 80.49% accuracy for the baseline method. Our approach also improves the

precision from 0.7188 to 0.9677, recall from 0.7667 to 1.00, and F1 score from 0.7419 to 0.9836.

Figure 11(c) and 12(c) show the confusion matrix of classifying multi-panel faults in the array

using the baseline method and our proposed approach. Table 2 and Table 3 show that both the

baseline method and our approach have a significantly higher accuracy for single-panel open-circuit

faults at 98.56% for our approach and 93.84% for the baseline linear regression. However, as with

single-panel faults, our approach shows the most significant improvement when classifying more

complex faults, such as occlusion and snow. The accuracy for occlusion faults increases from 88.15%

to 99.53%, while the accuracy for the snow faults increases from 86.73% to 97.16%. Our approach

also improves the F1 score for the open-circuit, occlusion, and snow anomalies from 0.8602, 0.7368,

and 0.7358 to 0.9691, 0.9885, and 0.9455, respectively. Table 2 and Table 3 show the values for all

the classification metrics for both approaches. Sundown yields up to 30% improvement over the

baseline regression method for some metrics and at least 8% improvement across all metrics— the

improvement is greater for more complex faults where baseline regression incurs higher errors.

Also, the high values of precision, recall, and F1 score mean that our approach not only correctly

classifies all the all the anomalous events to the correct category, but also does not misattribute

non-anomalous events to any anomaly.

Results Our experiments demonstrate the efficacy of our fault detection and classification methods

for real snow faults as well as synthetically injected single and concurrent panel-level faults. Our

results show that the random forest classifier is an effective approach for identifying both system-

wide faults as well as faults that occur on a subset of panels. Our approach is able to classify snow,

partial occlusion and open circuit faults with accuracy of more than 97% in terms of overall accuracy,

specificity, and sensitivity.
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6 RELATEDWORK
There has been significant work on predicting power output for solar sites [7, 9, 15, 28, 29, 32, 34].

All of these studies predict only system level output and generally report 20-30% error. These high

errors and inability to predict panel level output would cause their prediction for all panels to be the

same, and limit their ability to detect and classify anomalies. There is also significant prior work on

anomaly detection and classification in solar photovoltaic systems, which can be broadly classified

into model-based approaches [14, 17, 20, 24, 25] and machine learning based [10, 13, 16, 18, 26, 27,

30, 31, 36, 37] approaches. Some of these studies use power data from nearby solar sites [21, 35] to

detect and classify anomalies. In [35], authors compare the performance of different solar arrays

at the same site, but do not do anomaly classification. Our work uses the output of other nearby

panels to predict a panel’s output for detecting faults and can classify various types of faults, i.e.

snow, object covering, and electrical faults, on a single or multiple panels.

7 FUTUREWORK
We are working on extending our approach in multiple directions as a part of future work. Our

evaluation in this paper focuses on residential solar installations. However, our approach is also

applicable to utility-scale systems as well. Utility-scale systems present both opportunities and

challenges for SunDown’s approach. More data is often available from utility-scale arrays, such

as voltage and current, which could be leveraged by SunDown. Further, utility-scale deployments

are often optimized with less shading and consistent geometries that are easier for SunDown

to handle. At the same time, unlike residential-scale arrays that use micro-inverters to provide

per-panel generation, utility-scale installations use string inverters and may lack per-panel output

information. This will require our approach to be generalized to compare outputs on each “string”

of panels, rather than each panel individually. This makes the approach more tractable to larger

arrays with thousands of panels, but also provides more coarse-grained anomaly information at the

granularity of groups of panels. Nevertheless, we expect the approach to be useful for utility-scale

systems that comprise thousands of panels, especially to decide what panels are in need of cleaning

or repair. For example, to minimize maintenance costs, an operator may not necessarily want to

send out a technician until a certain number of panels are experiencing a fault.

Our anomaly detection approach requires a few days data to accurately predict per-panel solar

output. However, the anomaly classifier used in our approach needs a significant number of

anomalous events in each category for training purposes. This would require that the site has a

long history available. Our future work involves the design of a “universal” classifier that can be

trained using a collection of existing sites, and applied to new sites without additional training. We

also plan to include other types of anomalies, such as dust and other types of electrical faults.

8 CONCLUSIONS
In this paper, we proposed SunDown, a sensorless approach to detecting per-panel anomalies in

residential solar arrays. Our approach uses a model-driven approach that leverages correlations

between the power produced by adjacent panels to detect deviations from expected behavior.

SundDown can handle faults in multiple panels and determine the probable cause of anomalies.

We evaluated SunDown using two year panel-level generation data from the from a real site and a

manually gathered dataset of various faults. Our approach requires data from only 5 panels for

accurate prediction, is agnostic to weather characteristics, and yields high accuracy even when

panels from different roof geometries are used. We show that our approach is accurate in predicting

panel level output with a MAPE of 2.98% and can correctly classify anomalies with >97% accuracy.
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We released the per-panel dataset from the real site and the manually generated dataset of various

faults for research use.
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